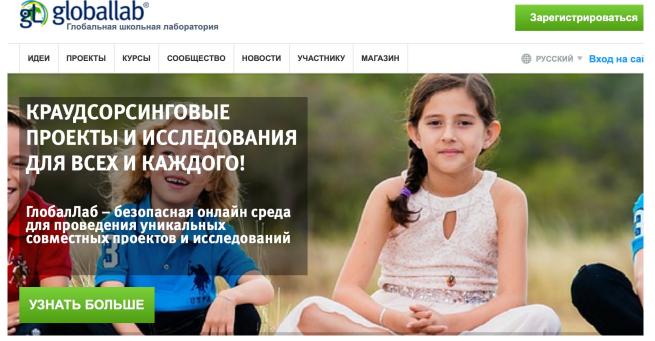


Как заинтересовать школьников естественными науками: исследование влияния онлайн-кружков


Юлия Керша, младший научный сотрудник Центра общего и дополнительного образования имени А.А. Пинского Института образования НИУ ВШЭ

Алексей Обухов, к.психол.н., доцент, ведущий эксперт Центра общего и дополнительного образования имени А.А. Пинского Института образования НИУ ВШЭ

естественными науками: исследование

влияния онлайн-кружков

Благодарим наших партнеров!

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта No 19-29-14190 «Развитие мотивации и самоэффективности школьников в изучении естественных наук через занятия в онлайн-кружках (по программам дополнительного образования естественнонаучной направленности)»

Благодарим наших партнеров!

Тюменеву Юлия Алексеевну (НИУ ВШЭ) за продуктивные консультации

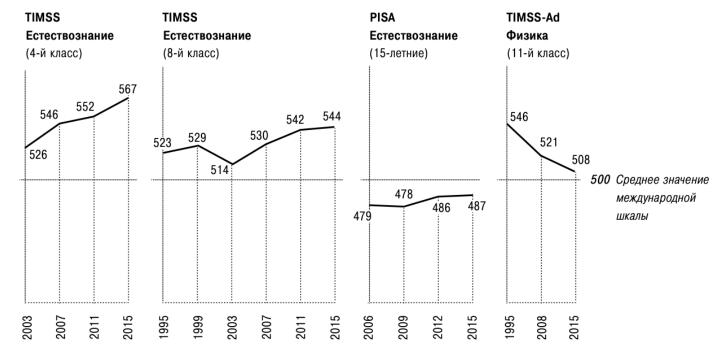
Как заинтересовать школьников

влияния онлайн-кружков

естественными науками: исследование

И, безусловно, коллег Хангаласского улуса (Якутия) в лице более 20 координаторов, без которых это исследование не могло состояться

Качество естественнонаучного образования в России остается на среднем уровне


Как заинтересовать школьников

влияния онлайн-кружков

естественными науками: исследование

Российские школьники:

- Показывают невысокий уровень естественнонаучной грамотности
- Не улучшают свою позицию в международных исследованиях по оценке качества образования данной предметной области
- Демонстрируют уровень мотивации и уверенности в своих силах ниже средних по странам-участницам TIMSS-2019
- За период пандемии больше всего знаний потеряли именно в области естествознания (Чабан и др., 2022)
- Проблема наиболее остро наблюдается в старших классах
- В 2018 году останавливается прирост TIMSS и немного снижается PISA

Пентин, А. Ю., Ковалева, Г. С., Давыдова, Е. И., & Смирнова, Е. С. (2018). Состояние естественнонаучного образования в российской школе по результатам международных исследований TIMSS и PISA. Вопросы образования, (1), 79-109.

Мотивация и самоэффективность в онлайн-обучении

Как заинтересовать школьников

влияния онлайн-кружков

естественными науками: исследование

Роль мотивации для успешной и эффективной учебы традиционно в фокусе внимания психологии образования (Выготский Л.С., 2005; Леонтьев Д.А., 2016, Маркова А.К., 1983, Патяева Е.Ю., 2018, Schunk et аl., 2014, Обухов А.С., 2019).

Самоэффективность как уверенность в своих силах (Бандура А., 2000; Майерс Д., 2011).

Мотивация может быть косвенно и напрямую связана со множеством показателей достижений и удовлетворенности в процессе учебы.

Актуализация вопросов функционирования и повышения мотивации учащихся при обучении в различных онлайн-форматах.

Дистанционная учеба требует от школьников большей самостоятельности и вовлеченности, нежели в ситуации очной работы с учителем (Chen K. C., Jang S. J., 2010; Шамина Н.В., 2019).

Вопрос удержания мотивации в ходе онлайн-обучения (Чернышова Н. А., Романова О. А., 2020; Малошонок Н. Г., Семенова Т. В., Терентьев Е. А., 2015). Его актуализации в условиях пандемии (Павлов А. В. и др., 2021; Бекова С. К. и др., 2021).

Обухов А. С. Современные исследования проблемы мотивации и саморегуляции человека в ситуации неопределенности и изменчивости мира // Исследователь/ Researcher. 2019. No 1–2. C. 10–21. Керша Ю. Д., Обухов А. С. Современные концепции изучения мотивации и самоэффективности школьников в онлайнформатах реализации дополнительного образования // Проблемы современного образования. 2021. №5. С. 35 – 48.

влияния онлайн-кружков

Мотивация и самоэффективность в онлайн-обучении

Две группы теорий мотивации и автономности (Hartnett M., 2016):

1 – рассматривается как личностная черта учащегося

2 – за их развитие отвечает содержание курса и учебная онлайн-среда

Теория самодетерминации Э. Дейси и Р. Райана (Deci & Ryan, 1985, 2000)

Керша Ю. Д., Обухов А. С. Современные концепции изучения мотивации и самоэффективности школьников в онлайн-форматах реализации дополнительного образования // Проблемы современного образования. 2021. №5. С. 35 – 48.

Два теоретических концепта (Hartnett M., 2016):

— это транзакционное расстояние — психологическая отстраненность, которую может испытывать учащийся из-за того, что в пространстве или времени он разделен с учителем (Moore M.G., 1990). Вопрос — какие элементы курса сокращают или увеличивают это «расстояние». Преодоление этого «расстояния» связано как с мотивацией, так и с саморегуляцией.

– автономность или контроль учащегося. Контроль – способность слушателя влиять, направлять и принимать решения, имеющие отношение к процессу обучения. Необходимый уровень контроля – баланс между независимостью, навыками и ресурсной поддержкой (Baynton M., 1992).

Дистанционный формат обучения требует более высокого уровня внутренней мотивации и вовлеченности (проявление саморегуляции) со стороны учащихся из-за специфики среды обучения, которая опирается на определенный уровень интереса и любознательности.

Вопрос — может ли онлайн-среды стать фактором повышения мотивации в процессе учебы (взаимовлияние между уровнем мотивации учащихся и средой обучения). НО! Выявлено, что со временем уровень мотивации в онлайн-обучении заметно снижается (Keller J. M., Suzuki K., 2004). Учащиеся оказываются изолированы, сталкиваются с техническими проблемами и недостаточно заинтересованы в их решении.

Роль мотивации и самоэффективности для академических результатов

В офлайн-модели обучения внутренняя мотивация значимо связана с образовательными результатами учащихся (чем выше внутренняя мотивация / интерес к предмету, тем выше результаты по естественнонаучной грамотности (Taylor G. et al., 2014).

Однако по российской выборке выявлено, что увеличение внутренней мотивации дает меньший прирост образовательных результатов в сравнении со странами-лидерами в естественнонаучном образовании (Гетман А. В., Керша Ю. Д., Косарецкий С. Г., 2020).

То есть помимо интереса к предмету, видимо важны ориентировка на академические достижения и существенное значение имеет средовой контекст образования — феномен «резильентных школ» (Пинская М. А., Хавенсон Т. Е., Косарецкий С. Г. и др., 2018).

Обсуждается, что дистанционные форматы имеют определенные преимущества в естественно-научном образовании (Бадаев Ю.Л., 2021), однако это требует доказательных исследований экспериментального характера.

Гетман А.В., Керша Ю.Д., Косарецкий С.Г. Мотивация учащихся к изучению естественных наук: межстрановой анализ взаимосвязи с уровнем естественно-научной грамотности // Психологическая наука и образование. 2020. Том 25. № 6. С . 77—87 .

Керша Ю. Д., Обухов А. С. Современные концепции изучения мотивации и самоэффективности школьников в онлайн-форматах реализации дополнительного образования // Проблемы современного образования. 2021. №5. С. 35 — 48.

Роль дополнительного образования в развитии естественно-научной грамотности

Как заинтересовать школьников

влияния онлайн-кружков

естественными науками: исследование

Существует гипотеза о том, что в младшей школе дополнительное образование детей компенсирует недостатки образования в школе, но выделяют скорее фактор вовлеченности родителей в выбор дополнительного образования (Павленко К. В., Поливанова К. Н., Бочавер А. А., Сивак Е. В., 2019; Байрамян Р.М., 2022).

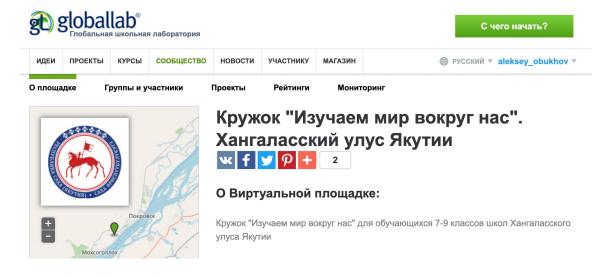
Наблюдается выделение значимости опыта дополнительного образования в автобиографиях выдающихся ученых в области естественных наук в их профессиональном становлении.

Различают форматы дополнительного образования: дополнение к общему образованию или как пространство для самореализации собственных интересов в деятельностных форматах (Асмолов А.Г., 2014).

Выделяют значимость исследовательской и проектной деятельности для развития различных аспектов естественно-научной грамотности (Иванов И.Ю., Павлов А.В. 2021; Обухов А.С., Косарецкий С.Г., Можаева М.В., Смирнов И.А., 2021).

В зарубежных публикациях в основном представлен анализ различных эффектов при применении цифровых технологий и инструментов при занятиях в дополнительном образовании, реализуемых в очном или смешанных форматах (Крупа Т.В., Лебедев А.А., Обухов А.С., 2021).

Крупа Т.В., Лебедев А.А., Обухов А.С. Организация дополнительного образования школьников в цифровой среде: обзор исследований // Вестник МГПУ. Серия «Педагогика и психология». 2021. № 3. С. 182-202.


Онлайн-кружки и онлайн-курсы

Как заинтересовать школьников

влияния онлайн-кружков

естественными науками: исследование

Онлайн-курсы	Онлайн-кружки	
Линейность	Гибкость	
Индивидуальное прохождение	Тьюторское сопровождение	
Связь ученик — преподаватель в автономных каналах	Наличие форм коммуникации между участниками в группах + пространство общей коммуникации	
Превалирование тестов	Приоритет продуктивным действиям	

Платформа «ГлобалЛаб» платная, но для участников эксперимента онлайн-кружки были бесплатными

https://globallab.org

Как участие в онлайн-кружках по естествознанию влияет на самоэффективность и мотивацию учащихся к изучению естественных наук?

Как заинтересовать школьников

влияния онлайн-кружков

естественными науками: исследование

Школы были распределены* **случайным образом** на две группы:

Регион: Хангаласский улус (Якутия)

Количество школ: 26

Возраст участников: 11-15 лет

Количество учащихся 7-9 классов: ~1400

Необходимое число

участников эксперимента: ~1000

(по результатам расчета для

статистической мощности 90%)

контрольную

14 школ

427 учащихся 7-9 классов

Участвовали только в анкетировании: на старте и по завершению эксперимента. Проходили обучение в школе в обычном режиме

экспериментальную

12 школ

596 учащихся 7-9 классов

Помимо участия в двух анкетированиях, получали доступ к платформе ГлобалЛаб и зачислялись в специально разработанный кружок по естествознанию

^{*} Распределение проходило на уровне школ, а не отдельных учащихся с целью снизить spillover-эффект и организационные издержки дальнейшей работы. В экспериментальную группу была возможность отобрать не более 600 учащихся

Учащиеся экспериментальной группы на 3 месяца получали бесплатный доступ к участию в онлайн-кружке

Подготовительная работа со школами и родителями, проведение вебинаров (сентябрь 2021)

Входное анкетирование (начало октября 2021)

Как заинтересовать школьников

влияния онлайн-кружков

естественными науками: исследование

Участие в онлайнкружках (октябрь-декабрь 2021)

Завершающее анкетирование (конец декабря 2021)

контрольная

экспериментальная

контрольная

экспериментальная

экспериментальная

контрольная экспериментальная

ВАЖНО: воздействие — то, чему были подвержены все члены экспериментальной группы — зачисление в онлайн-кружки и предоставление бесплатного доступа к платформе ГлобалЛаб. Каждому ученику экспериментальной группы был присвоен логин и пароль для получения доступа на платформу. Логины передавались учащимся списками через школьного координатора исследования

Для учащихся экспериментальной группы был специально разработан кружок по естественным наукам "Изучаем мир вокруг нас"

Учащиеся могли выбрать одну из 6 предметных областей для участия:

- физика
- RNMNX
- география
- биология
- экология
- астрономия

В каждом предмете было по 2 модуля учебной программы приблизительно на один месяц работы, которые состояли из **текстовых материалов**, знакомящих с темой, и **исследовательских проектов** Кроме того, каждый учащийся:

• Был зачислен в одну из 18 групп (случайным образом, но по возрасту), которые имели на платформе свою страницу, своего **тьютора** и пространство для групповой коммуникации

Теоретический материал к проекту "Работаем с космическими снимками"

Эта иллюстрированная статья предназначена для самостоятельной работы с онлайн-картами. Попробуйте ответить на вопросы, заданные в статье. Если вам что-то непонятно, вы можете обсудить возникающие вопросы в блоге курса.

- Рабочий журнал к проекту "Работаем с космическими снимками" Скачайте и распечатайте рабочий журнал для удобства работы в проекте.
- "Работаем с космическими снимками"

🔰 Учимся сопоставлять космические снимки с планом местности и реальной местностью

- Что такое снежинки. Материалы к проекту «Тайные иероглифы небес» Немного о снежинках. Дополнительные материалы к проекту, подобранные автором, Галиной Викторовной Леденёвой.
- 🔞 Тайные иероглифы небес

А вы знаете, что снежинки совершенно прозрачны? И только отражая своими гранями свет они создают привычный нам белый снег.

Рабочий журнал проекта "Плотность снежного покрова" Скачайте и распечатайте рабочий журнал для удобства работы в проекте.

Мзучаем плотность снега

Снег значительную часть года покрывает территорию России сплошным слоем мощного снежного покрова до метра и даже более толщиной. Что мы можем узнать о снеге на наших опытных участках?

Какие данные мы собирали?

Анкетирование 1	Анкетирование 2	
Мотивация (общая)	Мотивация (общая)	
Мотивация (для конкретного предмета)	Мотивация (для конкретного предмета)	
Самоэффективность (общая)	Самоэффективность (общая)	
Самоэффективность (для конкретного предмета)	Самоэффективность (для конкретного предмета)	
Социально-демографические характеристики		
	Любознательность	

Общая мотивация и самоэффективность: к сфере естествознания в целом Предметная мотивация и самоэффективность: учащиеся отвечали в анкете только про тот предмет, которым занимались на платформе (в случае экспериментальной группы) или которым хотели бы заниматься дополнительно (в случае контрольной группы) Социально-демографические характеристики: пол, класс, образование родителей, язык на

котором учащиеся разговаривают дома

Для оценки конструктов мы использовали уже имеющиеся в научной области инструменты, апробированные на русском языке

Как заинтересовать школьников

влияния онлайн-кружков

естественными науками: исследование

Конструкт	Источник	Количество утверждений	Ответные категории	Пример
Мотивация (общая)	PISA 2015 "Interest in broad science topic"	5	От 1 до 4	В какой мере вы интересуетесь следующими вопросами из области естественных наук? • Как наука может помочь нам предотвратить болезни?
Мотивация (для конкретного предмета)	Шкала поведенческого интереса к выбранному предмету (Тюменева Ю. А., Обухов А. С., Финогенова О. Н, 2020)	11	От 1 до 6	Насколько утверждения ниже похожи на тебя? • Я смотрю видео или читаю что-то про *предмет*, когда никто не требует этого от меня
Самоэффективность (общая)	PISA 2015 "Science self-efficacy"	6	От 1 до 4	Насколько легко было бы для вас самостоятельно выполнить следующие задачи? • Определить, какая естественнонаучная проблема тесно связана с вывозом мусора
Самоэффективность (для конкретного предмета)	PISA 2015 "Science self-concept"	4	От 1 до 4	Что ты думаешь о своих возможностях в естествознании? • Когда на естественнонаучных предметах объясняют новые темы, я все хорошо понимаю
Любознательность	Шкала любознательности (Орел Е.А., Куликова А.А., Канонир Т.Н., 2020)	10	От 1 до 6	Насколько ты согласен со следующими утверждениями? • Если я слышу что-то новое, я начинаю гуглить это

Анализ полученных данных делился на два этапа

Как заинтересовать школьников

влияния онлайн-кружков

естественными науками: исследование

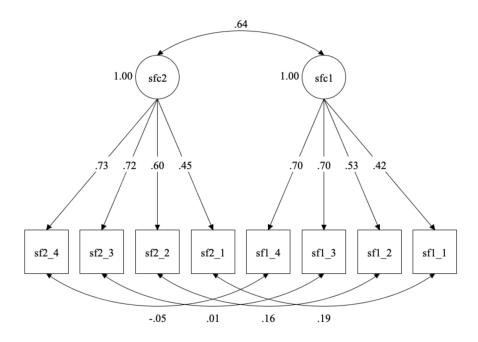
Подготовка данных к содержательному анализу

- Психометрический анализ для проверки качества используемых шкал до и после: проверка надежности, соответствия модели и функционирования ответных категорий (преимущественно Rating Scale Model)
- Проверка внутренней структуры каждой шкалы до и после с применением метода порядкового конфирматорного факторного анализа (КФА) с кластерной коррекцией по школам
- Проверка лонгитюдной измерительной инвариантности для каждой шкалы
- Дополнительные проверки инвариантности шкал для разных групп учащихся
- Оценка баланса по результатам рандомизации

Оценка влияния воздействия на мотивацию и самоэффективность учащихся

- Применение метода структурного моделирования (SEM) для оценки влияния попадания в экспериментальную группу (имеет преимущество* по сравнению с простым сравнением средних) на 2 вида мотивации и 2 вида самоэффективности
- Применение метода инструментальной переменной для оценки влияния занятий в онлайн-кружках на 2 вида мотивации и самоэффективности

^{*} Russell, D. W., Kahn, J. H., Spoth, R., & Altmaier, E. M. (1998). Analyzing data from experimental studies: A latent variable structural equation modeling approach. Journal of counseling psychology, 45(1), 18.


Психометрический анализ показал, что часть используемых шкал требует доработки

Шкала	Недостатки по результатам анализа	Внесенные корректировки	Надежность итоговых шкал	Показатели качества итоговых моделей КФА
Мотивация (общая)	-	-	0,76 (1) 0,80 (2)	CFI=0,999, TLI=0,996, RMSEA=0,043 (1) CFI=1,000, TLI=1,001, RMSEA=0,000 (2)
Мотивация (для конкретного предмета)	Не работают две ответные категории шкалы; Два утверждения плохо функционируют	Число ответных категорий сокращено до 4; Удалены два утверждения	0,81 (1) 0,83 (2)	CFI=0,988, TLI=0,983, RMSEA=0,048 (1) CFI=0,992, TLI=0,990, RMSEA=0,037 (2)
Самоэффективность (общая)	-	-	0,75 (1) 0,78 (2)	CFI=0,993, TLI=0,987, RMSEA=0,056 (1) CFI=0,993, TLI=0,987, RMSEA=0,043 (2)
Самоэффективность (для конкретного предмета)	Не работают крайние ответные категории	Ответы перекодированы в дихотомические	0,62 (1) 0,68 (2)	CFI=1,000, TLI=1,010, RMSEA=0,000 (1) CFI=1,000, TLI=1,000, RMSEA=0,000 (2)
Любознательность	Два утверждения не очень хорошо функционируют	Удалены два утверждения	0,73 (2)	CFI=0,976, TLI=0,962, RMSEA=0,044 (2)

Лонгитюдная инвариантность подтверждается в полной мере практически для всех шкал исследования

Почему это важно? В ситуации двух замеров с использованием одних и тех же инструментов отсутствие лонгитюдной инвариантности не позволяет напрямую сравнивать средние показатели – разница между ними будет свидетельствовать об изменении в инструменте, а не измеряемых ими качествах учащихся

Шкала	Инвариантность
Мотивация (общая)	Полная
Мотивация (для конкретного предмета)	Полная
Самоэффективность (общая)	Полная
Самоэффективность (для конкретного предмета)	Частичная

Пример модели лонгитюдной инвариантности в которую последовательно добавлялись условия по равенству в двух замерах:

- 1) факторных нагрузок
- порогов
- уникальной дисперсии индикаторов

Liu, Y., Millsap, R. E., West, S. G., Tein, J. Y., Tanaka, R., & Grimm, K. J. (2017). Testing measurement invariance in longitudinal data with ordered-categorical measures. Psychological methods, 22(3), 486

Как заинтересовать школьников

влияния онлайн-кружков

естественными науками: исследование

Не все учащиеся экспериментальной группы действительно занимались на платформе

Несмотря на то, что всем учащимся экспериментальной группы был выдан логин и пароль, проведены вводные вебинары и отправлены текстовые, а впоследствии и видеоинструкции по использованию платформы, лишь 38% участников экспериментальной группы выполнили хотя бы одно исследование на платформе. Среди основных причин невыполнения проектов на платформе были выделены:

- Технические трудности с доступом и работой на платформе
- Отсутствие времени на дополнительные занятия
- Отсутствие интереса к предлагаемым предметам и заданиям

Различия между теми, кто занимался на платформе и нет*

Мотивация (общая)

(предметная)

(общая)

Самоэффективность Самоэффективность Любознательность (предметная)

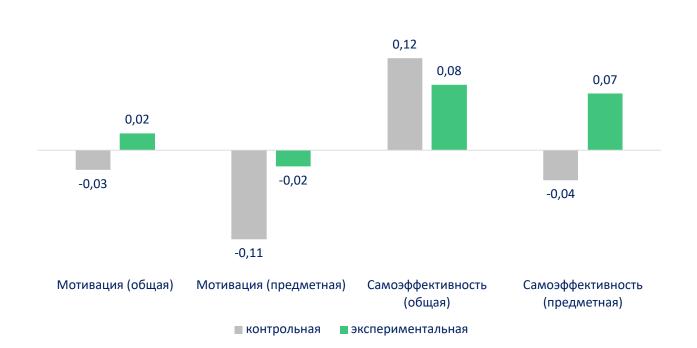
* Только в экспериментальной группе, все различия статистически незначимы

не занимались занимались

Чем отличаются друг от друга учащиеся контрольной и экспериментальной групп на старте исследования?

Цель рандомизации — сделать экспериментальную и контрольную группы максимально похожими на старте исследования. В нашем случае, к сожалению, даже несмотря на соблюдение процедуры случайного отбора, есть расхождения по некоторым переменным:

Значимые различия между группами были обнаружены для:

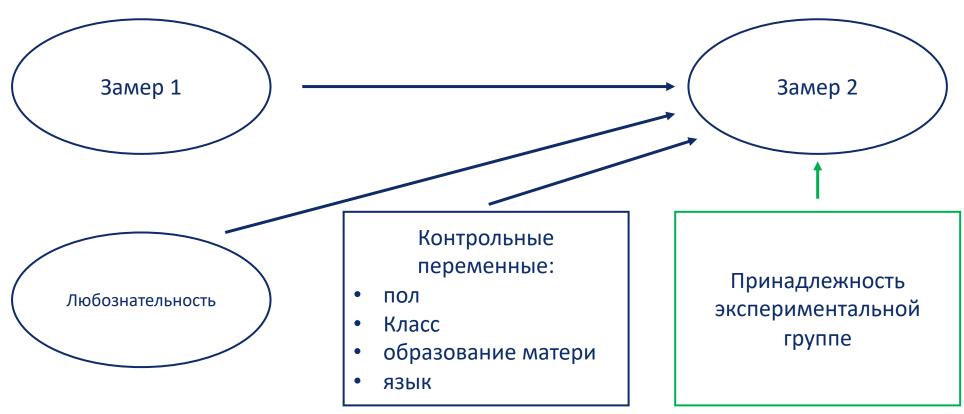

- общей мотивации, но не предметной
- количества учащихся разговаривающих дома на русском языке (80% для экспериментальной группы и 37% для контрольной)*

На русскоязычной выборке баланс соблюдается для всех параметров

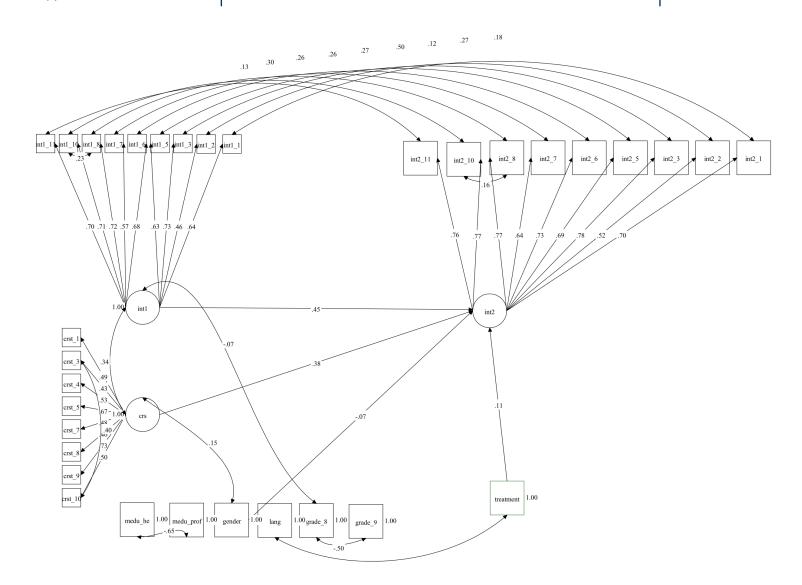
^{*} Показатель языка при этом никак не коррелирует с исследуемыми конструктами, поэтому, возможно, вносит минимальные смещения. Тем не менее, дальнейший анализ проводился на двух подвыборках с целью попытаться нивелировать возникший дисбаланс

За 3 месяца исследования в контрольной группе изучаемые переменные снизились, а в экспериментальной немного выросли

Изменение показателей в контрольной и экспериментальной группах на старте и в конце исследования



- Только общая самоэффективность выросла среди всех учащихся и, что любопытно, сильнее для экспериментальной группы
- Наиболее явное различие наблюдается в случае предметных результатов: в экспериментальной группе снизилась мотивация, как и в контрольной, но не так сильно, а предметная самоэффективность, наоборот, подросла
- Общая тенденция к снижению показателей или отсутствия их роста скорее всего связана с тем, что второй замер проводился зимой, когда дети уже начинают уставать от учебы по сравнению с тем, что наблюдалось на старте в сентябре


влияния онлайн-кружков

Для оценки влияния попадания в экспериментальную группу было оценено 4 структурные модели

Общая логика построения моделей

Например, для предметной мотивации

Принадлежность учащихся к экспериментальной группе дает положительный эффект, но в основном только на общей выборке учащихся

Как заинтересовать школьников

влияния онлайн-кружков

естественными науками: исследование

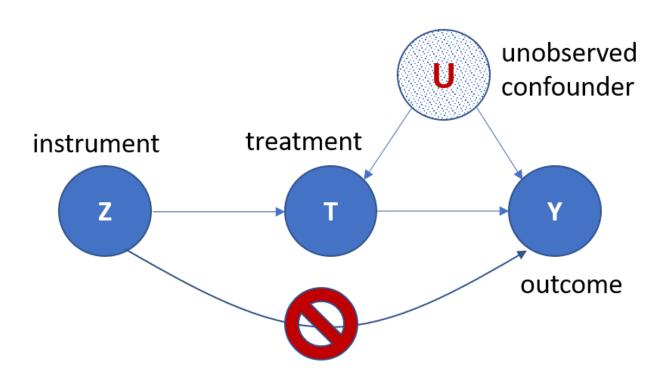
Шкала	Полученный эффект от попадания в экспериментальную группу	Качество модели	На выборке детей, говорящих дома только на русском языке*
Мотивация (общая)	0,12**	CFI=0,980, TLI=0,979, RMSEA=0,021	-
Мотивация (для конкретного предмета)	0,11**	CFI=0,980, TLI=0,979, RMSEA=0,016	-
Самоэффективность (общая)	-	CFI=0,980, TLI=0,978, RMSEA=0,017	-
Самоэффективность (для конкретного предмета)	0,11***	CFI=0,984, TLI=0.981, RMSEA=0,016	0,11**

^{*}p<0.1; **p<0.05; ***p<0.01

^{*} Количество учащихся в выборке уменьшается до 638 человек

Предыдущий метод позволял оценить эффект от попадания в экспериментальную группу, но не от самих занятий на платформе

Как заинтересовать школьников


влияния онлайн-кружков

естественными науками: исследование

Как мы помним, действительно занимались на платформе при этом только 38% учащихся, попавших в экспериментальную группу

Для того чтобы учесть тот факт, что не все представители экспериментальной группы в итоге прошли занятия далее будет применен метод регрессионного анализа с инструментальной переменной (IV)

Инструмент – распределение на контрольную и экспериментальную группы, а воздействием теперь становится факт участия в занятиях на платформе

Murnane, R. J., & Willett, J. B. (2010). Methods matter: Improving causal inference in educational and social science research. Oxford University Press.

Влияние от самих занятий на платформе на мотивацию и самоэффективность оказывается сильнее, но только для предметов, которыми дети занимались

Как заинтересовать школьников

влияния онлайн-кружков

естественными науками: исследование

Шкала	Эффект от занятий на платформе	На выборке детей, говорящих дома только на русском языке*
Мотивация (общая)	-	-
Мотивация (для конкретного предмета)	0,21***	0,24**
Самоэффективность (общая)	-	-
Самоэффективность (для конкретного предмета)	0,36***	0,56***

^{*} Количество учащихся в выборке уменьшается до 638 человек

Ограничения работы

• Несмотря на соблюдение процедуры рандомизации имеются смещения в некоторых переменных на старте исследования для контрольной и экспериментальной групп. Мы попытались отработать этот недостаток дополнительным анализом на русскоязычной подвыборке, однако, результаты этой части анализа могут быть неточными из-за вынужденного снижения количества выборки и, соответственно, статистической мощности.

Как заинтересовать школьников

влияния онлайн-кружков

естественными науками: исследование

- Влияние школьных координаторов на участие детей на платформе. Особенно тот факт, что дети, которые в итоге занимались на платформе не отличаются значимо от остальных по переменным интереса и самоэффективности может говорить о том, что в разных школах координаторы поразному вели работу с детьми для их подключения и работы на платформе, что мы не смогли проконтролировать в полной мере.
- Довольно трудно обеспечить требуемый охват участников исследования и при этом не вносить дополнительных мотивов для участия. На последнем месяце исследования, когда выполнение проектов на платформе было довольно низким, мы все-таки ввели дополнительный фактор, помимо получения сертификата, для повышения вовлеченности учащихся. Этим фактором стала возможность перезачесть выполненный на платформе проект в рамках школьной программы.

влияния онлайн-кружков

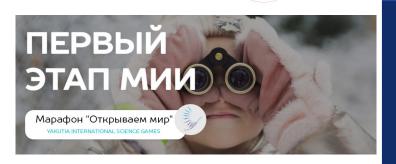
Повышают ли все-таки онлайн-кружки интерес и самоэффективность учащихся...

- Отличительная черта исследования изменение мотивации и самоэффективности учащихся было оценено при учете общего уровня любознательности детей
- При всех ограничениях работы, кажется, что положительный эффект от занятий все-таки имеется. Причем работает он в том числе как компенсаторный механизм: у детей, которые занимались на платформе, также как и у тех, кто состоял в контрольной группе, снижались показатели предметного интереса к середине года, но в меньшей степени
- Дискуссионным остается вопрос о возможностях массового использования таких форматов работы. Очевидно, что дополнительные занятия даже при обеспечении, казалось бы, всех условий для этого могут не вызвать интерес учеников. Возможные пути: интеграция подобных заданий (в форме исследований) в учебный процесс, либо более масштабные мероприятия по вовлечению родителей и их детей в подобные форматы работы, объяснении их пользы и преимуществ.
- Специфический контекст пандемии мог сказаться на вовлеченности учащихся в дистанционные форматы

влияния онлайн-кружков

С чем мы можем соотносить данные эксперимента при дальнейшей интерпретации результатов:

2020 — **150** 6-классников московских школ — курс «Парк онлайн» (видеозадания открытого типа на выбор до 3-х в неделю из 7-ми; 9 недель + задания на лето). В Гугл-классе.


2021 – 180 6-классников московских школ – курс «Исследование онлайн» (видеозадания открытого типа на выбор до 3-х в неделю из 7-ми; 8 недель + итоговая сборка работ). В Гугл-классе.

2021 — **102** школьника 8-11 классов из 7 стран — 13-я Международная исследовательская школа (командные экспресс-исследования, в 9 командах, работающих онлайн, 12 дней). В Canvas, с применений различных цифровых инструментов.

2022 — **320** учащихся 1-11 классов из 27 регионов — марафон «Открываем мир» (видеозадания открытого типа — любое число заданий из 7-ми в неделю на выбор, 10 недель. На платформе «Реактор» (при изначальной регистрации около 2000 учащихся из более 60 регионов)

13th RS Online

Практические выводы для цифровых платформ

- Значим изначальный интерес к предметной области (вопрос о способах вовлечения по собственному желанию) и/или социальное подкрепление участия (наличие социально-поддерживаемых ближних целей деятельности)
- Значимо наличие возможности самостоятельного выбора и понятных правилах выбора содержания и форм активности в заданных форматах и сроках
- Важен учет природно-климатических и социокультурных условий регионов (их разнообразия) при формировании контента онлайн-курсов и онлайн-кружков
- Важны регулярные онлайн-коммуникации с постановкой задач и пояснением «правил игры», обратной связью (существенна оперативность и повышение уверенности в своих способностях) по выполненным задачам, ответам на вопросы учащихся
- Продуктивны видеоформаты постановки задач на действие, помимо текстовых форм
- Значимо расширение модерируемых форматов групповой работы и коммуникации может повысить вовлеченность и мотивацию участников
- Видимо, онлайн-кружки наиболее продуктивны как гибридный, а не как только онлайн формат работа со школьниками в дополнительном образовании